If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-125x+2850=0
a = 1; b = -125; c = +2850;
Δ = b2-4ac
Δ = -1252-4·1·2850
Δ = 4225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4225}=65$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-125)-65}{2*1}=\frac{60}{2} =30 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-125)+65}{2*1}=\frac{190}{2} =95 $
| 4*x(-9)=1/3*x | | 4(y+5)=5(y+3)+-9 | | 3x-10=2(x-5)+x | | 2(u+2)+u=3(u+1)+6 | | r=1/29(X+Y) | | y=42.1+(-0.57y) | | 2/3+1/2x=5/6+2x | | 2(w+16)+2w=256 | | (8x+7)°+(9x-4)°=180 | | 4*x-9=1/3*x | | 4x-9=1/3x | | 450=10b+5 | | 12+0.20(10x+5)=59 | | 6(3r-4)=(3/8)(46r+8) | | 2|x|=-80 | | 4(5+2x)-5=3(3- | | 8x-2=2x-40 | | (2x-19)+(x+51)+x=180 | | -1/3(12x-24)=-4+2x | | 7x-3=12x-9 | | 0.4(3x-6)=1.6 | | (2x-19)+(x+15)+x=180 | | -11b=11 | | 250/9=x^2+9 | | 6x+4=15x+24 | | Y=1.5y+12 | | 9/2x+5=3/2+17 | | x*9/2=3x | | 3/7=w-1/7 | | -1/2(6x-12)=15-3x | | 1.94x-10/8x+4.32=2(1.15x+8.5)/2 | | 7/9d-1/4=1/3 |